
NAG C Library Function Document

nag_zgbrfs (f07bvc)

1 Purpose

nag_zgbrfs (f07bvc) returns error bounds for the solution of a complex band system of linear equations

with multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_zgbrfs (Nag_OrderType order, Nag_TransType trans, Integer n, Integer kl,
Integer ku, Integer nrhs, const Complex ab[], Integer pdab,
const Complex afb[], Integer pdafb, const Integer ipiv[], const Complex b[],
Integer pdb, Complex x[], Integer pdx, double ferr[], double berr[],
NagError *fail)

3 Description

nag_zgbrfs (f07bvc) returns the backward errors and estimated bounds on the forward errors for the

solution of a complex band system of linear equations with multiple right-hand sides AX ¼ B, ATX ¼ B

or AHX ¼ B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_zgbrfs (f07bvc) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the function computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

ðAþ �AÞx ¼ bþ �b
j�aijj � �jaijj and j�bij � �jbij:

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i

jxi � x̂xij=max
i

jxij

where x̂x is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f07 – Linear Equations (LAPACK) f07bvc

[NP3645/7] f07bvc.1

2: trans – Nag_TransType Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

if trans ¼ Nag NoTrans, the linear equations are of the form AX ¼ B;

if trans ¼ Nag Trans, the linear equations are of the form ATX ¼ B;

if trans ¼ Nag ConjTrans, the linear equations are of the form AHX ¼ B.

Constraint: trans ¼ Nag NoTrans, Nag Trans or Nag ConjTrans.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: kl – Integer Input

On entry: kl, the number of sub-diagonals within the band of A.

Constraint: kl � 0.

5: ku – Integer Input

On entry: ku, the number of super-diagonals within the band of A.

Constraint: ku � 0.

6: nrhs – Integer Input

On entry: r, the number of right-hand sides.

Constraint: nrhs � 0.

7: ab½dim� – const Complex Input

Note: the dimension, dim, of the array ab must be at least maxð1; pdab� nÞ.
On entry: the original n by n band matrix A as supplied to nag_zgbtrf (f07brc) but with reduced
requirements since the matrix is not factorized. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. The storage of elements aij, for

i ¼ 1; . . . ; n and j ¼ maxð1; i� klÞ; . . . ;minðn; iþ kuÞ, depends on the order parameter as
follows:

if order ¼ Nag ColMajor, aij is stored as ab½ðj� 1Þ � pdabþ kuþ i� j�;

if order ¼ Nag RowMajor, aij is stored as ab½ði� 1Þ � pdabþ klþ j� i�.

8: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � klþ kuþ 1.

9: afb½dim� – const Complex Input

Note: the dimension, dim, of the array afb must be at least maxð1;pdafb� nÞ.
On entry: the LU factorization of A, as returned by nag_zgbtrf (f07brc).

10: pdafb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array afb.

Constraint: pdafb � 2� klþ kuþ 1.

f07bvc NAG C Library Manual

f07bvc.2 [NP3645/7]

11: ipiv½dim� – const Integer Input

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On entry: the pivot indices, as returned by nag_zgbtrf (f07brc).

12: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least maxð1;pdb� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdb� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.
On entry: the n by r right-hand side matrix B.

13: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order ¼ Nag ColMajor, pdb � maxð1;nÞ;
if order ¼ Nag RowMajor, pdb � maxð1; nrhsÞ.

14: x½dim� – Complex Input/Output

Note: the dimension, dim, of the array x must be at least maxð1;pdx� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdx� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix X is stored in x½ðj� 1Þ � pdxþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix X is stored in x½ði� 1Þ � pdxþ j� 1�.
On entry: the n by r solution matrix X, as returned by nag_zgbtrs (f07bsc).

On exit: the improved solution matrix X.

15: pdx – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order ¼ Nag ColMajor, pdx � maxð1; nÞ;
if order ¼ Nag RowMajor, pdx � maxð1;nrhsÞ.

16: ferr½dim� – double Output

Note: the dimension, dim, of the array ferr must be at least maxð1; nrhsÞ.
On exit: ferr½j� 1� contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

17: berr½dim� – double Output

Note: the dimension, dim, of the array berr must be at least maxð1; nrhsÞ.
On exit: berr½j� 1� contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

18: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

f07 – Linear Equations (LAPACK) f07bvc

[NP3645/7] f07bvc.3

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, kl = hvaluei.
Constraint: kl � 0.

On entry, ku = hvaluei.
Constraint: ku � 0.

On entry, nrhs = hvaluei.
Constraint: nrhs � 0.

On entry, pdab ¼ hvaluei.
Constraint: pdab > 0.

On entry, pdafb ¼ hvaluei.
Constraint: pdafb > 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdx ¼ hvaluei.
Constraint: pdx > 0.

NE_INT_2

On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.
On entry, pdb ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdb � maxð1; nrhsÞ.
On entry, pdx ¼ hvaluei, n ¼ hvaluei.
Constraint: pdx � maxð1; nÞ.
On entry, pdx ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdx � maxð1; nrhsÞ.

NE_INT_3

On entry, pdab ¼ hvaluei, kl ¼ hvaluei, ku ¼ hvaluei.
Constraint: pdab � klþ kuþ 1.

On entry, pdafb ¼ hvaluei, kl ¼ hvaluei, ku ¼ hvaluei.
Constraint: pdafb � 2� klþ kuþ 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

f07bvc NAG C Library Manual

f07bvc.4 [NP3645/7]

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16nðkl þ kuÞ real
floating-point operations. Each step of iterative refinement involves an additional 8nð4kl þ 3kuÞ real
operations. This assumes n � kl and n � ku. At most 5 steps of iterative refinement are performed, but
usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Ax ¼ b

or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately
8nð2kl þ kuÞ real operations.

The real analogue of this function is nag_dgbrfs (f07bhc).

9 Example

To solve the system of equations AX ¼ B using iterative refinement and to compute the forward and
backward error bounds, where

A ¼

�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0:00þ 0:00i
0:00þ 6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0:00þ 0:00i �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0:00þ 0:00i 0:00þ 0:00i 4:48� 1:09i �0:46� 1:72i

1
CCA

0
BB@

and

B ¼

�1:06þ 21:50i 12:85þ 2:84i
�22:72� 53:90i �70:22þ 21:57i
28:24� 38:60i �20:73� 1:23i

�34:56þ 16:73i 26:01þ 31:97i

1
CCA

0
BB@ :

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by nag_zgbtrf
(f07brc).

9.1 Program Text

/* nag_zgbrfs (f07bvc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, ipiv_len, j, kl, ku, n, nrhs, pdab, pdafb, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */
Complex *ab=0, *afb=0, *b=0, *x=0;
double *berr=0, *ferr=0;
Integer *ipiv=0;

#ifdef NAG_COLUMN_MAJOR
#define AB(I,J) ab[(J-1)*pdab + ku + I - J]
#define AFB(I,J) afb[(J-1)*pdafb + kl + ku + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

f07 – Linear Equations (LAPACK) f07bvc

[NP3645/7] f07bvc.5

order = Nag_ColMajor;
#else
#define AB(I,J) ab[(I-1)*pdab + kl + J - I]
#define AFB(I,J) afb[(I-1)*pdafb + kl + J - I]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07bvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%ld%*[^\n] ", &n, &nrhs, &kl, &ku);
ipiv_len = n;
pdab = kl + ku + 1;
pdafb = 2*kl + ku + 1;

#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;

#else
pdb = nrhs;
pdx = nrhs;

#endif

/* Allocate memory */
if (!(ab = NAG_ALLOC((kl+ku+1) * n, Complex)) ||

!(afb = NAG_ALLOC((2*kl+ku+1) * n, Complex)) ||
!(b = NAG_ALLOC(nrhs * n, Complex)) ||
!(x = NAG_ALLOC(nrhs * n, Complex)) ||
!(berr = NAG_ALLOC(nrhs, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) ||
!(ipiv = NAG_ALLOC(ipiv_len, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Set A to zero to avoid referencing unitialized elements */
for (i = 0; i < n*(kl+ku+1); ++i)

{
ab[i].re = 0.0;
ab[i].im = 0.0;

}
/* Read A from data file */
for (i = 1; i <= n; ++i)

{
for (j = MAX(i-kl,1); j <= MIN(i+ku,n); ++j)

Vscanf(" (%lf , %lf)", &AB(i,j).re, &AB(i,j).im);
}

Vscanf("%*[^\n] ");
/* Read B from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}

Vscanf("%*[^\n] ");
/* Copy A to AFB and B to X */
for (i = 1; i <= n; ++i)

{
for (j = MAX(i-kl,1); j <= MIN(i+ku,n); ++j)

{
AFB(i,j).re = AB(i,j).re;
AFB(i,j).im = AB(i,j).im;

}
}

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= nrhs; ++j)

f07bvc NAG C Library Manual

f07bvc.6 [NP3645/7]

{
X(i,j).re = B(i,j).re;
X(i,j).im = B(i,j).im;

}
}

/* Factorize A in the array AFB */
f07brc(order, n, n, kl, ku, afb, pdafb, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07brc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute solution in the array X */
f07bsc(order, Nag_NoTrans, n, kl, ku, nrhs, afb, pdafb, ipiv,

x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07bsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
f07bvc(order, Nag_NoTrans, n, kl, ku, nrhs, ab, pdab, afb, pdafb,

ipiv, b, pdb, x, pdx, ferr, berr, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07bvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print solution */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,

Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print forward and backward errors */
Vprintf("\nBackward errors (machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)
Vprintf("%11.1e%s", berr[j-1], j%7==0 ?"\n":" ");

Vprintf("\nEstimated forward error bounds (machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)
Vprintf("%11.1e%s", ferr[j-1], j%7==0 ?"\n":" ");

Vprintf("\n");
END:
if (ab) NAG_FREE(ab);
if (afb) NAG_FREE(afb);
if (b) NAG_FREE(b);
if (x) NAG_FREE(x);
if (berr) NAG_FREE(berr);
if (ferr) NAG_FREE(ferr);
if (ipiv) NAG_FREE(ipiv);
return exit_status;

}

f07 – Linear Equations (LAPACK) f07bvc

[NP3645/7] f07bvc.7

9.2 Program Data

f07bvc Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU

(-1.65, 2.26) (-2.05,-0.85) (0.97,-2.84)
(0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) (0.59,-0.48)

(-0.77, 2.83) (-1.06, 1.94) (3.33,-1.04)
(4.48,-1.09) (-0.46,-1.72) :End of matrix A

(-1.06, 21.50) (12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
(28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) (26.01, 31.97) :End of matrix B

9.3 Program Results

f07bvc Example Program Results

Solution(s)
1 2

1 (-3.0000, 2.0000) (1.0000, 6.0000)
2 (1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) (3.0000, 5.0000)
4 (6.0000,-8.0000) (-8.0000, 2.0000)

Backward errors (machine-dependent)
9.8e-17 7.2e-17

Estimated forward error bounds (machine-dependent)
3.7e-14 4.4e-14

f07bvc NAG C Library Manual

f07bvc.8 (last) [NP3645/7]

	f07bvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trans
	n
	kl
	ku
	nrhs
	ab
	pdab
	afb
	pdafb
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

