f07 — Linear Equations (LAPACK) f07bve

NAG C Library Function Document
nag zgbrfs (f07bvc)

1 Purpose

nag_zgbrfs (f07bvc) returns error bounds for the solution of a complex band system of linear equations

with multiple right-hand sides, AX = B, ATX = B or A”X = B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_zgbrfs (Nag_OrderType order, Nag_TransType trans, Integer n, Integer kl,
Integer ku, Integer nrhs, const Complex ab[], Integer pdab,
const Complex afb[], Integer pdafb, const Integer ipiv[], const Complex b[],
Integer pdb, Complex x[], Integer pdx, double ferr[], double berr[],
NagError *fail)

3 Description

nag_zgbrfs (f07bvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex band system of linear equations with multiple right-hand sides AX = B, A'X =B

or A"X = B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_zgbrfs (f07bvc) in terms of a single right-hand side b
and solution .

Given a computed solution x, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A)x =b+ b
|6a;;| < Blai;| and [6b;| < B|b;].
Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — &;|/ max |z;]
2 7

where Z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f07bve. 1

f07bve NAG C Library Manual

2: trans — Nag TransType Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

if trans = Nag_NoTrans, the linear equations are of the form AX = B;
if trans = Nag_Trans, the linear equations are of the form A7 X = B;

if trans = Nag_ConjTrans, the linear equations are of the form Alx = B.

Constraint: trans = Nag _NoTrans, Nag_Trans or Nag_ConjTrans.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: kl — Integer Input
On entry: k;, the number of sub-diagonals within the band of A.

Constraint: kl > 0.

5: ku — Integer Input
On entry: k,, the number of super-diagonals within the band of A.

Constraint: Ku > 0.

6: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

7: ab[dim| — const Complex Input
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the original n by n band matrix A as supplied to nag_zgbtrf (f07brc) but with reduced
requirements since the matrix is not factorized. This is stored as a notional two-dimensional array

with row elements or column elements stored contiguously. The storage of elements a;;, for
i=1,...,n and j=max(l,i—k),...,min(n,i+k,), depends on the order parameter as
follows:
if order = Nag_ColMajor, q;; is stored as ab[(j — 1) x pdab + ku + 7 — jl;
if order = Nag_ RowMajor, a,; is stored as ab[(i — 1) x pdab + kIl + j —1].
8: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab > kl + ku + 1.

9: afb[dim] — const Complex Input
Note: the dimension, dim, of the array afb must be at least max(1, pdafb x n).

On entry: the LU factorization of A, as returned by nag_zgbtrf (f07brc).

10: pdafb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array afb.

Constraint: pdafb > 2 x kl + ku + 1.

07bve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07bve

11:

12:

14:

15:

16:

17:

18:

ipiv[dim] — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).

On entry: the pivot indices, as returned by nag_zgbtrf (f07brc).

b[dim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).
x[dim]| — Complex Input/Output

Note: the dimension, dim, of the array x must be at least max(1,pdx x nrhs) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) X pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].

On entry: the n by r solution matrix X, as returned by nag_zgbtrs (f07bsc).

On exit. the improved solution matrix X.

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order = Nag_ColMajor, pdx > max(1,n);

if order = Nag_RowMajor, pdx > max(1, nrhs).
ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).
On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,n
berr[dim] — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound (3 for the jth solution
vector, that is, the jth column of X, for j =1,2,...,r
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

[NP3645/7] f07bve.3

f07bvce

6

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, kl = (value).
Constraint: kl > 0.

On entry, ku = (value).
Constraint: ku > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdafb = (value).
Constraint: pdafb > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT 2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_INT 3

On entry, pdab = (value), kl = (value), ku = (value).

Constraint: pdab > kl + ku + 1.

On entry, pdafb = (value), kl = (value), ku = (value).

Constraint: pdafb > 2 x kl + ku + 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

7

NAG C Library Manual

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please consult NAG for assistance.

Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in

practice they almost always overestimate the actual error.

f07bvc.4

[NP3645/7]

f07 — Linear Equations (LAPACK) f07bve

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n(k; + k,) real
floating-point operations. Each step of iterative refinement involves an additional 8n(4k; + 3k,) real
operations. This assumes n > k; and n > k,. At most 5 steps of iterative refinement are performed, but
usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Ax = b

or Ay = b; the number is usually 5 and never more than 11. Each solution involves approximately
8n(2k; + k,,) real operations.

The real analogue of this function is nag_dgbrfs (f07bhc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

—1.6542.26: —2.05—0.85¢ 0.97 — 2.84¢ 0.00 + 0.00¢
0.00+6.30: —1.48 —1.75¢ —3.99+4.01¢ 0.59 — 0.48:
0.004+0.00¢ —0.77+2.83¢ —1.06 + 1.94¢ 333 - 1.04
0.00 + 0.00¢ 0.0040.00¢ 4.48 —1.09¢ —0.46 —1.72¢

A:

and

—1.06 + 21.50: 12.85 + 2.84¢
—22.72 —53.90: —70.22 4+ 21.5T¢
28.24 —38.60: —20.73 — 1.23¢
—34.56 +16.731 26.01 +31.97:

B:

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by nag_ zgbtrf
(f07brc).

9.1 Program Text

/* nag_zgbrfs (£07bvc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, ipiv_len, j, k1, ku, n, nrhs, pdab, pdafb, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */

Complex *ab=0, *afb=0, *b=0, *x=0;
double *berr=0, *ferr=0;

Integer *xipiv=0;

#ifdef NAG_COLUMN_MAJOR

#define AB(I,J) ab[(J-1)*pdab + ku + I - J]
#define AFB(I,J) afb[(J-1)*pdafb + k1 + ku + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]

#define X(I,J) x[(J-1)*pdx + I - 1]

[NP3645/7] f07bve.5

f07bve

order = Nag_Co
#else
#define AB(I,J)
#define AFB(I,J)
#define B(I,J) b
#define X(I,J) x

1Major;

ab[(I-1)#*pdab + k1 + J - I]
afb[(I-1)*pdafb + k1 + J - I]
[(I-1)*pdb + J - 1]

[(I-1)*pdx + J - 1]

order = Nag_RowMajor;

#endif

INIT FAIL(fail
Vprintf ("£07bv

/* Skip headin
Vscanf ("s* ["\n]
Vscanf ("%1d%1d%
ipiv_1len = n;

)i

c Example Program Results\n\n")

g in data file */

")

1d%1d%*[*\n] ", &n, &nrhs, &kl1,

pdab = k1l + ku + 1;

pdafb = 2xkl +

ku + 1;

#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else

pdb = nrhs;

pdx = nrhs;
#endif

/* Allocate memory */
if (!(ab = NAG_ALLOC((kl+ku+l) * n, Complex))

‘(
(b
1 (x = NAG
1(
¢
! (ipiv =
{
Vprintf ("A
exit_statu
goto END;
}

= NAG_ALLOC(nrhs, double))

)

)

berr = NAG_ALLOC(nrhs, double)) |
|

NAG_ALLOC (ipiv_len, Intege

ALLOC(nrhs * n, Complex)
_ALLOC(nrhs * n, Complex)

llocation failure\n");
s = -1;

\
\
r)))

afb = NAG_ALLOC((2*kl+ku+l) * n, Complex
= NAG_.

&ku) ;

|l
)) 1

NAG C Library Manual

/* Set A to zero to avoid referencing unitialized elements */

for (i = 0; 1
{
abl[i].re =
abl[i].im =
}
/* Read A from
for (i = 1; i

{

< n*(kl+ku+l); ++1i)
0.0;
0.0;

data file =*/
<= n; ++i)

for (j = MAX(i-k1,1); j <= MIN(i+ku,n);

Vscanf ("

}
Vscanf ("s* ["\n]
/* Read B from

(%1f , %1f)", &AB(i,j).re,

")
data file =*/

for (i = 1; i <= n; ++1)

{

for (3 = 1;

Vscanf ("

Vscanf ("s* ["\n]

j <= nrhs; ++3j)
(%1f , %1f)", &B(i,j).re,

")

/* Copy A to AFB and B to X */

<= n; ++1)

for (j = MAX(i-k1l,1); j <= MIN(i+ku,n);

AFB(i,j).re = AB(i,j).re;

for (i = 1; 1
{
{
AFB (
b
}
for (i = 1; 1
{
for (j =1
f07bvc.6

i,j).im = AB(i,j).1im;

<= n; ++1)

; J <= nrhs; ++3j)

B(i

++3)
&AB (1,

,J) .im

++7)

.im) ;

)i

[NP3645/7]

f07 — Linear Equations (LAPACK) f07bve

/* Factorize A in the array AFB */
f07brc(order, n, n, k1, ku, afb, pdafb, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7brc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥
/* Compute solution in the array X */
f07bsc(order, Nag NoTrans, n, kl, ku, nrhs, afb, pdafb, ipiv,
x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07bsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
f07bvc(order, Nag NoTrans, n, kl, ku, nrhs, ab, pdab, afb, pdafb,
ipiv, b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07bvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print solution */
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print forward and backward errors */
Vprintf ("\nBackward errors (machine-dependent)\n");

for (j = 1; j <= nrhs; ++3j)
Vprintf ("$11l.1le%s", berr[j-11, Jj%7==0 2"\n":" ");

Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)

Vprintf ("s1l.le%s", ferr[j-1]1, j%7==0 2"\n":" ");

Vprintf ("\n") ;
END:

if (ab) NAG_FREE (ab);

if (afb) NAG_FREE (afb) ;

if (b) NAG_FREE(Db);

if (x) NAG_FREE (x) ;

if (berr) NAG_FREE (berr);

if (ferr) NAG_FREE(ferr);

if (ipiv) NAG_FREE (ipiv);

return exit_status;

[NP3645/7] f07bve.7

f07bve NAG C Library Manual

9.2 Program Data

fO07bvc Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU
(-1.65, 2.26) (-2.05,-0.85)

(0.00, 6.30) (-1.48,-1.75) (0.59,-0.48)

(0.
(-3.
(-0.77, 2.83) (-1.06, 1.94) (3.33,-1.04)
(4.48,-1.09) (-0.46,-1.72) :End of matrix A
(-1.06, 21.50) (12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
(28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) (26.01, 31.97) :End of matrix B

9.3 Program Results

fO07bvc Example Program Results
Solution(s)

1
(-3.0000, 2.0000)
(1.0000,-7.0000)
(-5.0000, 4.0000)
(6.0000,-8.0000)

2
1.0000, 6.0000)
7.0000,-4.0000)
3.0000, 5.0000)
8.0000, 2.0000)

S w N

(
(
(
(

Backward errors (machine-dependent)

9.8e-17 7.2e-17
Estimated forward error bounds (machine-dependent)
3.7e-14 4.4e-14

f07bve.8 (last) [NP3645/7]

	f07bvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trans
	n
	kl
	ku
	nrhs
	ab
	pdab
	afb
	pdafb
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

